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This article is the third in a series documenting the efficiency and noise temperature

characteristics of the DSN 64-meter antenna network prior to its upgrading to 70-meter

configuration./DSS 14 (Goldstone, California) is the last of the three large antennas to be

upgraded, and the test results presented here document its performance just prior to its

downtime during the end of 1987. Antenna area efficiency was found to be somewhat

higher at DSS 14 than at DSS 43 [Australia) and DSS 63 (Spain). The peak X-band effi-

ciency was determined to be 49.8 percent (without atmosphere), compared with 45.4per-

cent and 45.1 percent for DSS 43 and DSS 63, respectively. The X-band zenith system

noise temperature was found to be I to 3 kelvins higher than at the other two stations,

depending on which maser was chosen for the measurements. Ascribing efficiency differ-

ences to small-scale antenna surface roughness, DSS 14 may be regarded as having a 1..5-

to 1.6-ram rms surface as compared to the other two antennas with 1. 7- to 1.8-mm rms

surfaces.

I. Introduction

This article is the third in a series documenting the perfor-

mance of the DSN 64-meter network prior to its upgrading to

70-meter configuration. DSS 14 is the third of the three large

antennas to be modified; DSS 63 was upgraded in May 1987,

and DSS 43 in September 1987. DSS 14 will achieve its final

configuration by early 1988. The S- and X-band performance

of the overseas 64-meter antennas is documented in [1] and

[21.

Antenna calibration measurements were taken during the

months of August and September 1987. Because of a change

in radiometer calibration technique in the middle of the cali-

bration project (hourly noise diode calibration instead of ap-

proximately once every 6 hours), only those data from days

258,267, and 270 were used in the final data reduction. The

radio sources used on those days as standard efficiency cali-

brators were 3C123, 3C274, and 3C286. Subsequent to the

DSS 14 tests, modifications were made in the DSN radio source

list 1 which affected these sources. The changes involved

both flux and source size corrections, and it was necessary to

1M. Klein, A. Freiley, and P. Richter, DSN Radio Source List for An-

tenna Calibration, JPL Report D-3801, Rev. B (internal document),

Jet Propulsion Laboratory, Pasadena, California.
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apply these corrections to the measured efficiency values

after the fact. Since 3C274 is one of the strongest DSN cali-
brators visible from both the northern and southern hemi-

spheres (and is also used in both the DSS 43 and DSS 63 cali-

brations), it must be accepted that the efficiency calibrations

based on this source, as published in [1] and [2], are slightly
in error. The source size correction for 3C274 increased

0.369 percent. This would have the effect of increasing the
apparent antenna efficiency by approximately half this amount

(for a 50 percent efficient antenna). The effect of these changes

on the published DSS 43 and DSS 63 performance values will
be discussed later.

The DSS 63 calibration article [1] contains a great amount

of detail regarding calibration methods used and techniques

involved in data reduction and analysis. That reference should

be used if any uncertainty of meaning arises in the reading of
this article.

Data taken on the three listed days appear to be generally
well-behaved, and the weather was noted as clear with wind

not exceeding 15 mph. Psychrometric data were taken hourly

during the measurements, and this proved to be extremely
useful in determining adjustments for the "no-atmosphere"

antenna calibration values. Based on the temperature and rela-

tive humidity values given in the calibration report, an average

weather model for DSS 14 was developed for the 13-day span
of measurements. Total atmospheric attenuation was deter-

mined to be surprisingly constant over this time period, even
though the temperature and relative humidity values varied

greatly (e.g., the temperature ranged from 58°F to 103°F,

and the relative humidity varied, almost inversely, from
89 percent down to 7 percent). For the purposes of this arti-
cle, the S-band zenith attenuation was determined to be 0.025

dB, and the X-band zenith attenuation was determined to be

0.033 dB. These may be contrasted with the DSS 43/63 model
of 0.03 dB and 0.04 dB, respectively, for S- and X-band, for

year-average attenuation at those temperate locales.

After the data were corrected for flux and source size as

given in [3], it became clear that the efficiency values deter-

mined using 3C123 were about 3 percent high (about 1-1/2

efficiency percent) when compared to the efficiency values
determined using sources 3C274 and 3C286. This difference

was the same at S- and X-bands, and did not seem to be a

function of elevation angle (which would rule out a weather

model error for data taken on different days). After consulta-

tion (M. J. Klein, private communication), it was decided to

adjust the S- and X-band efficiency values by the factor 0.97

for those antenna efficiencies determined using radio source
calibrator 3C123. This radio source calibrator is about one-

fourth as strong as the strongest DSN standard calibrator

(3C274), and since 3C274 and 3C286 give results agreeing very

well with one another, 3C123 efficiency determinations were

changed. It is possible that 3C123 flux has changed; however,

at this time, the source of the discrepancy has not been deter-

mined. The problem will be examined in the future, and
3C274/3C123 comparisons using other antennas at Goldstone

may help resolve it. Although both 3C274 and 3C123 were

used in the DSS 63 calibration [1], the 3 percent difference

was not apparent in those data.

II. Antenna Area Efficiency

Figures 1 and 2 show the S-band antenna area efficiencies

both with and without the atmospheric attenuation included.

Note that area efficiency is referenced to a uniformly illumi-

nated aperture, 64 meters in diameter, at the given frequen-
cies. For S-band (2295 MHz), the 100 percent efficient antenna

gain is 63.75 dBi; for X-band (8420 MHz) it is 75.04 dBi.

It should be noted that data taken at the low elevation an-

gles (less than 10 degrees) show much scatter. This is possibly

due to atmospheric attenuation changes from point to point or
scintillations that affect the noise temperature measurement in

the on-source position. Also shown in the figures are second-

order curve fits to the data. Note that the curve fit in Fig. 2

(S-band efficiency without atmosphere) actually curves slightly

upward! This is obviously a curve-fitting anomaly, with a pos-

sible contribution from a slight atmospheric model error. It

would seem reasonable to assume that the S-band efficiency is
nearly a constant 59.4 percent at all elevation angles. The data

do not warrant a more complex description.

Figures 3 and 4 show the X-band area efficiencies both with

and without atmosphere. Note again the extreme spread of

measured values at elevation angles below 30 degrees. This

undoubtedly contributes to the large uncertainties in the shape
of the curve, even though the tight clustering of points in the

40- to 70-degree elevation region appears to determine the
peak value fairly well.

Table 1 gives the coefficients of the second-order curve fits

in Figs. 1 through 4. Also given in the table are peak values of
efficiency and the elevation angles at which they occur.

III. System Noise Temperature

Figures 5 and 6 show the S-band system noise temperature

both with and without atmospheric contribution. The two sets

of data represent data taken with two different masers. The
upper curve shows data taken with the Block V maser; the

lower curve is that taken with the SPD maser in a low noise

path. Because of the limited elevation angle range of the lower

data set, it was not curve-fitted to represent system noise tern-
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perature as a function of elevation angle. The upper data set

in Figs. 5 and 6 was fitted with a fourth-order curve, the coef-

ficients of which are given in Table 2. Note that in Fig. 5 (above

65 degrees) and in Fig. 6 (above 70 degrees) the extrapolated
values of the curve fit are created to be constant, as the actual

fourth-order curve varies radically from what would be consid-

ered a reasonable extrapolation.

Figures 7 and 8 present the X-band system noise tempera-
tures both with and without atmospheric contribution. Note

again two sets of data. The upper data set was taken with the

TWM-1 maser, while the lower data set was taken with the

TWM-2 maser. Only the upper data set was curve-fitted, owing
to the limited elevation angle range of the lower set. It appears

that a constant difference (approximately 3 kelvins) separates
the two sets. For the X-band curve fit in Fig. 7, the extrapo-

lation is constant above 75 degrees; for Fig. 8 it is constant

above 85 degrees.

IV. Error Analysis

A comprehensive review of error sources in this antenna cal-
ibration scheme is given in [1] and [2]. It bears repeating that

the major contributor to the error in determination of antenna
efficiency is the uncertainty regarding radio source flux density.

It is estimated that this uncertainty at S-band is -+0.3 dB (3o)

(-+3 percent, la); at X-band it is -+0.5 dB (3o) (-+4 percent,

lo). Indeed, the 3 percent efficiency adjustments at S- and

X-band are perhaps indicative of this problem. The absolute

accuracy in the determination of antenna efficiency for the

DSS 14 antenna (as determined similarly for DSS 43 and DSS
63) is thus stated as:

S-band: -+0.4 dB (30)

X-band: +0.6 dB (3o)

V. Comparison of Measured and Expected
Antenna Efficiencies

As described in [1] and [2], a comparison was made among

the 64-m X-band antenna performance expectations as given

by the physical optics (PO) and geometrical theory of diffrac-

tion (GTD) programs. The PO analysis was described in great
detail in those references and will not be repeated here. Of

interest here are the GTD calculations of antenna efficiency as

a function of elevation angle, taking into account the long-

period (_1 to 30 meters) gravitational deformation of the

main reflector surface, The GTD-generated efficiency curve is

modified by known or postulated hardware loss (0.821 dB;

cf. Table 3, items 8-11 in [1]), and this curve is then further

modified by various amounts of so-called Ruze loss, the loss

of antenna efficiency due to small-scale (_1- to lO0-centi-

meter) surface roughness.

Figure 9 shows the GTD curves with three levels of surface

roughness: 1.06 mm (the design expectation of rms panel and

subreflector tolerance), 1.5 mm, and 1.6 mm. It is seen that

the DSS 14 antenna efficiency curve corresponds over the
entire elevation angle range to an rms surface tolerance of
1.55 ram. Also shown on this curve are the DSS 43 and

DSS 63 efficiencies, which, as stated in previous articles, cor-

respond to surface tolerances of 1.7 to 1.8 mm. Note that the

DSS 63 antenna differed structurally from the DSS 14 and

DSS 43 antennas, and thus the greater efficiency falloff of

that antenna is not surprising.

VI. Future Updates for DSS 14, 43, and
63 64-Meter Efficiencies

Due to a recent change in the source size correction factor
for radio source 3C274 (see footnote 1), there exists a very

small discrepancy in the efficiency values determined for DSS

14 as compared with those determined for DSS 43 and DSS

63. For example, it is possible that the 0.369 percent increase

in X-band source size correction might increase the efficiencies

of the overseas antennas by as much as 0.2 percent (e.g., from

50.0 percent to 50.2 percent). This increase is small compared

to the scatter of data points (cf. Figs. 3 and 4 and Table 1),

and thus may be judged as not significant in a statistical sense.
Consultation with one of the authors of JPL Report D-3801

(see footnote 1) revealed that the present source size correc-
tion value should be considered interim only, and that an

updated and highly improved document will be published
within the next several months. 2 His advice in the matter of

efficiency adjustment was to make no changes at this time.
This article and its two precursors used radio source flux and
size corrections which were the latest available at the time.

Updated values of efficiency for the three stations can be

computed when the future DSN radio source list becomes

available, although values of tenths of an efficiency percent

are not judged significant in view of the absolute accuracy

levels presently attainable.

2M. J. Klein, private communication, Jet Propulsion Laboratory,
Pasadena, California.
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Table 1. Coefficients of second order curve fits for antenna area efficiencies

efficiency = a 0 + alO + a202

where 0 = elevation angle, degrees

Coefficient/parameter S-band (2295 MHz) X-band (8420 MHz)

With atmosphere With atmosphere

(cf. Fig. 1) (cf. Fig. 3)

a 0 0.567571 0.434121

a 1 7.446475 E-04 2.234165E-03

a 2 -5.887066E-06 -2.082133E-05

Peak efficiency, % 0.59112 0.49405

Peak angle, deg 63.244 53.651

Standard deviation, % 0.00354 0.00853

Without atmosphere Without atmosphere

(cf. Fig. 2) (cf. Fig. 4)

a o 0.592390 0.457946

a 1 1.936510E-06 1.572380E-03

a 2 4.675295 E-07 -1.541394E-05

Peak efficiency, % 0.594 (see text 0.49805

Peak angle, deg (see text) 51.005

Standard deviation, % (see text) 0.00859
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Table2.Coefficientsoffourth-ordercurvefitsfor S- and X-band system noise temperatures

Tsystem =a O +alO +a202+a303+a404

where 0 = elevation angle, degrees

Coefficient/parameter S-band (2295 MHz) a X-band (8420 MHz) b

a 0

a 1

a 2

a 3

a4

Zenith noise temperature, K

Standard deviation, K

a 0

a 1

a 2

a 3

a 4

Zenith noise temperature, K

Standard deviation, K

With atmosphere With atmosphere

(cf. Fig. 5) (cf. Fig. 7)

4.919551E+01 5.836215E+01

-2.040157E+00 -2.234962E÷00

6.445888E-02 6.128831E-02

-9.468854E-04 -7.517988E-04

5.169310E-06 3.378224E-06

Note: If0 /> 65 deg, Note: If0 _ 75 deg,

T = 21.161 K T = 25.211 K

21.161 25.211

0.334 0.358

Without atmosphere Without atmosphere

(cf. Fig. 6) (cf. Fig. 8)

2.727111E+01 3.355993E+01

-2.675004E-01 -5.586415E-01

2.027795E-03 1.278769E-02

2.917834E-05 -1.356839E-04

-3.911682E-07 5.376014E-07

Note: If0 _ 70 deg, Note: If0 _ 85 deg,

T = 19.098 K T = 23.203 K

19.098 23.203

0.239 0.284

aS-band (2295 MHz) specs: Maser SPD Blk IV, S/N 4002, 1.83 K; Maser Blk V, S/N 5002, 4.48 K.

bX-band (8420 MHz) specs: Maser Blk II, TWM-2, S/N 2007, 3.46 K; Maser Blk IIA, TWM-1,

S/N 2011, 3.82 K.
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Fig. 3. DSS 14 64-m X-band (8420-MHz) area efficiency with

atmospheric attenuation included
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Fig. 2. DSS 14 64-m S-band (2295-MHz) area efficiency

without atmospheric attenuation
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temperature, including atmospheric contribution
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temperature without atmospheric contribution
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Fig. 8. DSS 14 64-m X-band (8420-MHz) system noise
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